3.2.11 \(\int \frac {A+B \cos (c+d x)}{(a+a \cos (c+d x))^{3/2}} \, dx\) [111]

Optimal. Leaf size=87 \[ \frac {(A+3 B) \tanh ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {a+a \cos (c+d x)}}\right )}{2 \sqrt {2} a^{3/2} d}+\frac {(A-B) \sin (c+d x)}{2 d (a+a \cos (c+d x))^{3/2}} \]

[Out]

1/2*(A-B)*sin(d*x+c)/d/(a+a*cos(d*x+c))^(3/2)+1/4*(A+3*B)*arctanh(1/2*sin(d*x+c)*a^(1/2)*2^(1/2)/(a+a*cos(d*x+
c))^(1/2))/a^(3/2)/d*2^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.05, antiderivative size = 87, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.120, Rules used = {2829, 2728, 212} \begin {gather*} \frac {(A+3 B) \tanh ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {a \cos (c+d x)+a}}\right )}{2 \sqrt {2} a^{3/2} d}+\frac {(A-B) \sin (c+d x)}{2 d (a \cos (c+d x)+a)^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(A + B*Cos[c + d*x])/(a + a*Cos[c + d*x])^(3/2),x]

[Out]

((A + 3*B)*ArcTanh[(Sqrt[a]*Sin[c + d*x])/(Sqrt[2]*Sqrt[a + a*Cos[c + d*x]])])/(2*Sqrt[2]*a^(3/2)*d) + ((A - B
)*Sin[c + d*x])/(2*d*(a + a*Cos[c + d*x])^(3/2))

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 2728

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[-2/d, Subst[Int[1/(2*a - x^2), x], x, b*(C
os[c + d*x]/Sqrt[a + b*Sin[c + d*x]])], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 2829

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(b*
c - a*d)*Cos[e + f*x]*((a + b*Sin[e + f*x])^m/(a*f*(2*m + 1))), x] + Dist[(a*d*m + b*c*(m + 1))/(a*b*(2*m + 1)
), Int[(a + b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 -
b^2, 0] && LtQ[m, -2^(-1)]

Rubi steps

\begin {align*} \int \frac {A+B \cos (c+d x)}{(a+a \cos (c+d x))^{3/2}} \, dx &=\frac {(A-B) \sin (c+d x)}{2 d (a+a \cos (c+d x))^{3/2}}+\frac {(A+3 B) \int \frac {1}{\sqrt {a+a \cos (c+d x)}} \, dx}{4 a}\\ &=\frac {(A-B) \sin (c+d x)}{2 d (a+a \cos (c+d x))^{3/2}}-\frac {(A+3 B) \text {Subst}\left (\int \frac {1}{2 a-x^2} \, dx,x,-\frac {a \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{2 a d}\\ &=\frac {(A+3 B) \tanh ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {a+a \cos (c+d x)}}\right )}{2 \sqrt {2} a^{3/2} d}+\frac {(A-B) \sin (c+d x)}{2 d (a+a \cos (c+d x))^{3/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.21, size = 63, normalized size = 0.72 \begin {gather*} \frac {(A+3 B) \tanh ^{-1}\left (\sin \left (\frac {1}{2} (c+d x)\right )\right ) \cos ^3\left (\frac {1}{2} (c+d x)\right )+\frac {1}{2} (A-B) \sin (c+d x)}{d (a (1+\cos (c+d x)))^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(A + B*Cos[c + d*x])/(a + a*Cos[c + d*x])^(3/2),x]

[Out]

((A + 3*B)*ArcTanh[Sin[(c + d*x)/2]]*Cos[(c + d*x)/2]^3 + ((A - B)*Sin[c + d*x])/2)/(d*(a*(1 + Cos[c + d*x]))^
(3/2))

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(219\) vs. \(2(72)=144\).
time = 0.26, size = 220, normalized size = 2.53

method result size
default \(\frac {\sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (A \ln \left (\frac {4 \sqrt {a}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}+4 a}{\cos \left (\frac {d x}{2}+\frac {c}{2}\right )}\right ) \sqrt {2}\, \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a +3 B \ln \left (\frac {4 \sqrt {a}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}+4 a}{\cos \left (\frac {d x}{2}+\frac {c}{2}\right )}\right ) \sqrt {2}\, \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a +A \sqrt {a}\, \sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}-B \sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {a}\right )}{4 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) a^{\frac {5}{2}} \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {a \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, d}\) \(220\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+B*cos(d*x+c))/(a+a*cos(d*x+c))^(3/2),x,method=_RETURNVERBOSE)

[Out]

1/4/cos(1/2*d*x+1/2*c)*(sin(1/2*d*x+1/2*c)^2*a)^(1/2)*(A*ln(2*(2*a^(1/2)*(sin(1/2*d*x+1/2*c)^2*a)^(1/2)+2*a)/c
os(1/2*d*x+1/2*c))*2^(1/2)*cos(1/2*d*x+1/2*c)^2*a+3*B*ln(2*(2*a^(1/2)*(sin(1/2*d*x+1/2*c)^2*a)^(1/2)+2*a)/cos(
1/2*d*x+1/2*c))*2^(1/2)*cos(1/2*d*x+1/2*c)^2*a+A*a^(1/2)*2^(1/2)*(sin(1/2*d*x+1/2*c)^2*a)^(1/2)-B*2^(1/2)*(sin
(1/2*d*x+1/2*c)^2*a)^(1/2)*a^(1/2))/a^(5/2)/sin(1/2*d*x+1/2*c)/(a*cos(1/2*d*x+1/2*c)^2)^(1/2)/d

________________________________________________________________________________________

Maxima [B] Leaf count of result is larger than twice the leaf count of optimal. 62254 vs. \(2 (72) = 144\).
time = 3.35, size = 62254, normalized size = 715.56 \begin {gather*} \text {Too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c))/(a+a*cos(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

1/16*((3*(sqrt(2)*log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - sqrt(2)*
log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1) + 4*sqrt(2)*sin(5/2*d*x + 5/
2*c))*cos(3*d*x + 3*c)^2 + 27*(sqrt(2)*log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1
/2*c) + 1) - sqrt(2)*log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*cos(2*
d*x + 2*c)^2 + 27*(sqrt(2)*log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) -
 sqrt(2)*log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*cos(d*x + c)^2 + (
3*(sqrt(2)*log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - sqrt(2)*log(cos
(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*cos(3*d*x + 3*c)^2 + 27*(sqrt(2)*l
og(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - sqrt(2)*log(cos(1/2*d*x + 1
/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*cos(2*d*x + 2*c)^2 + 27*(sqrt(2)*log(cos(1/2*d
*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - sqrt(2)*log(cos(1/2*d*x + 1/2*c)^2 + si
n(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*cos(d*x + c)^2 + 3*(sqrt(2)*log(cos(1/2*d*x + 1/2*c)^2 + s
in(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - sqrt(2)*log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c
)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*sin(3*d*x + 3*c)^2 + 27*(sqrt(2)*log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x +
 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - sqrt(2)*log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(
1/2*d*x + 1/2*c) + 1))*sin(2*d*x + 2*c)^2 + 27*(sqrt(2)*log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 +
2*sin(1/2*d*x + 1/2*c) + 1) - sqrt(2)*log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/
2*c) + 1))*sin(d*x + c)^2 - 96*sqrt(2)*cos(3/2*d*x + 3/2*c)*sin(d*x + c) - 60*sqrt(2)*cos(1/2*d*x + 1/2*c)*sin
(d*x + c) + 2*(9*(sqrt(2)*log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) -
sqrt(2)*log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*cos(2*d*x + 2*c) +
9*(sqrt(2)*log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - sqrt(2)*log(cos
(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*cos(d*x + c) + 3*sqrt(2)*log(cos(1
/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - 3*sqrt(2)*log(cos(1/2*d*x + 1/2*c)^
2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1) - 10*sqrt(2)*sin(5/2*d*x + 5/2*c) + 16*sqrt(2)*sin(3/
2*d*x + 3/2*c) + 10*sqrt(2)*sin(1/2*d*x + 1/2*c))*cos(3*d*x + 3*c) + 60*(sqrt(2)*sin(2*d*x + 2*c) + sqrt(2)*si
n(d*x + c))*cos(5/2*d*x + 5/2*c) + 6*(9*(sqrt(2)*log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1
/2*d*x + 1/2*c) + 1) - sqrt(2)*log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) +
1))*cos(d*x + c) + 3*sqrt(2)*log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1)
 - 3*sqrt(2)*log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1) + 16*sqrt(2)*si
n(3/2*d*x + 3/2*c) + 10*sqrt(2)*sin(1/2*d*x + 1/2*c))*cos(2*d*x + 2*c) + 6*(3*sqrt(2)*log(cos(1/2*d*x + 1/2*c)
^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - 3*sqrt(2)*log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x
 + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1) + 10*sqrt(2)*sin(1/2*d*x + 1/2*c))*cos(d*x + c) + 2*(9*(sqrt(2)*log(
cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - sqrt(2)*log(cos(1/2*d*x + 1/2*
c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*sin(2*d*x + 2*c) + 9*(sqrt(2)*log(cos(1/2*d*x + 1
/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - sqrt(2)*log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*
d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*sin(d*x + c) + 10*sqrt(2)*cos(5/2*d*x + 5/2*c) - 16*sqrt(2)*cos(
3/2*d*x + 3/2*c) - 10*sqrt(2)*cos(1/2*d*x + 1/2*c))*sin(3*d*x + 3*c) - 20*(3*sqrt(2)*cos(2*d*x + 2*c) + 3*sqrt
(2)*cos(d*x + c) + sqrt(2))*sin(5/2*d*x + 5/2*c) + 6*(9*(sqrt(2)*log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/
2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - sqrt(2)*log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2
*d*x + 1/2*c) + 1))*sin(d*x + c) - 16*sqrt(2)*cos(3/2*d*x + 3/2*c) - 10*sqrt(2)*cos(1/2*d*x + 1/2*c))*sin(2*d*
x + 2*c) + 32*(3*sqrt(2)*cos(d*x + c) + sqrt(2))*sin(3/2*d*x + 3/2*c) + 3*sqrt(2)*log(cos(1/2*d*x + 1/2*c)^2 +
 sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - 3*sqrt(2)*log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1
/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1) + 20*sqrt(2)*sin(1/2*d*x + 1/2*c))*cos(6/5*arctan2(sin(5/2*d*x + 5/2*c),
 cos(5/2*d*x + 5/2*c)))^2 + 9*(3*(sqrt(2)*log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x
+ 1/2*c) + 1) - sqrt(2)*log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*cos
(3*d*x + 3*c)^2 + 27*(sqrt(2)*log(cos(1/2*d*x +...

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 172 vs. \(2 (72) = 144\).
time = 0.34, size = 172, normalized size = 1.98 \begin {gather*} \frac {\sqrt {2} {\left ({\left (A + 3 \, B\right )} \cos \left (d x + c\right )^{2} + 2 \, {\left (A + 3 \, B\right )} \cos \left (d x + c\right ) + A + 3 \, B\right )} \sqrt {a} \log \left (-\frac {a \cos \left (d x + c\right )^{2} - 2 \, \sqrt {2} \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {a} \sin \left (d x + c\right ) - 2 \, a \cos \left (d x + c\right ) - 3 \, a}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right ) + 4 \, \sqrt {a \cos \left (d x + c\right ) + a} {\left (A - B\right )} \sin \left (d x + c\right )}{8 \, {\left (a^{2} d \cos \left (d x + c\right )^{2} + 2 \, a^{2} d \cos \left (d x + c\right ) + a^{2} d\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c))/(a+a*cos(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

1/8*(sqrt(2)*((A + 3*B)*cos(d*x + c)^2 + 2*(A + 3*B)*cos(d*x + c) + A + 3*B)*sqrt(a)*log(-(a*cos(d*x + c)^2 -
2*sqrt(2)*sqrt(a*cos(d*x + c) + a)*sqrt(a)*sin(d*x + c) - 2*a*cos(d*x + c) - 3*a)/(cos(d*x + c)^2 + 2*cos(d*x
+ c) + 1)) + 4*sqrt(a*cos(d*x + c) + a)*(A - B)*sin(d*x + c))/(a^2*d*cos(d*x + c)^2 + 2*a^2*d*cos(d*x + c) + a
^2*d)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {A + B \cos {\left (c + d x \right )}}{\left (a \left (\cos {\left (c + d x \right )} + 1\right )\right )^{\frac {3}{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c))/(a+a*cos(d*x+c))**(3/2),x)

[Out]

Integral((A + B*cos(c + d*x))/(a*(cos(c + d*x) + 1))**(3/2), x)

________________________________________________________________________________________

Giac [B] Leaf count of result is larger than twice the leaf count of optimal. 160 vs. \(2 (72) = 144\).
time = 0.49, size = 160, normalized size = 1.84 \begin {gather*} \frac {\frac {\sqrt {2} {\left (A \sqrt {a} + 3 \, B \sqrt {a}\right )} \log \left (\sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1\right )}{a^{2} \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )} - \frac {\sqrt {2} {\left (A \sqrt {a} + 3 \, B \sqrt {a}\right )} \log \left (-\sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1\right )}{a^{2} \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )} - \frac {2 \, \sqrt {2} {\left (A \sqrt {a} \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - B \sqrt {a} \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{{\left (\sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )} a^{2} \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{8 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c))/(a+a*cos(d*x+c))^(3/2),x, algorithm="giac")

[Out]

1/8*(sqrt(2)*(A*sqrt(a) + 3*B*sqrt(a))*log(sin(1/2*d*x + 1/2*c) + 1)/(a^2*sgn(cos(1/2*d*x + 1/2*c))) - sqrt(2)
*(A*sqrt(a) + 3*B*sqrt(a))*log(-sin(1/2*d*x + 1/2*c) + 1)/(a^2*sgn(cos(1/2*d*x + 1/2*c))) - 2*sqrt(2)*(A*sqrt(
a)*sin(1/2*d*x + 1/2*c) - B*sqrt(a)*sin(1/2*d*x + 1/2*c))/((sin(1/2*d*x + 1/2*c)^2 - 1)*a^2*sgn(cos(1/2*d*x +
1/2*c))))/d

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {A+B\,\cos \left (c+d\,x\right )}{{\left (a+a\,\cos \left (c+d\,x\right )\right )}^{3/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A + B*cos(c + d*x))/(a + a*cos(c + d*x))^(3/2),x)

[Out]

int((A + B*cos(c + d*x))/(a + a*cos(c + d*x))^(3/2), x)

________________________________________________________________________________________